Reagents

COOH --> Esters

H2SO4

COOH --> Methyl Ester

diazomethane (CH2N2)

ROH --> X

PBr3 -or- P/I2

Ketone/Aldehyde/Formaldehyde --> ROH

H2O/H3O+

Acetal Formation

mild acid (TsOH)

Reduce Ketone/CHO with thion

excess PhSH/TsOH

Secondary/Tertiary ROH --> X

HCl/ZnCl2 (Lucas Reagent)

Primary ROH --> X

displacement of the ROH with HCl/ZnCl2

Acylation of Amines (Amide reduction)

Pyridine (base)

alkane ROH --> cycloester

NaOH (Williamson Ether Synthesis)

thiol --> ester like sulfur

1.NaOH 2.CH3I (Sn2)

Cleavage of Ethers

H-X (X=Br, I) (Harsh conditions)

Auto-oxidation by Ethers

excess O2

alkene --> epoxide

peracid (mCPBA, MMPP/CH3/H2O)

ROH--> X

Thionylchloride (SOCl2)/heat

ROH --> X

H-X (only tertiary ROH)

Dehydration-Hydrogentation of ROH

1. H2SO4/heat 2. H2+Pd/C (or Pt)

Removal of ROH

1. TsCl/pyridine 2. LiAlH4/ether 3. H3O+
pitfalls: other carbonyls

Dehydration of ROH

1. H2SO4
secondary and tertiary preferred

Dehydration of ROH

1. with itself
primary ROH --> elimination is slow so this process occurs.

ROH + COOH --> ketone + ester

1. H2SO4

ROH --> Inorganic esters

1. TsCl/pyridine (GLG)
2. H2SO4 (gen. primary R, sulfate, good R+ source)
3. HNO3 (nitrates, explosive)
4. H3PO4 (phosphates, DNA backbone)

Cleavage of vicinal diols

HIO4/perodic acid

alkene --> 2ROH

1. OsO4/H2O2
2. KMnO4/OH-

Pinacol Rearangement

1. H2SO4/heat
R must be alkyl

Bimolecular Dehydration of primary ROH

1. H2SO4/heat
**symmetric ethers

Alkoxymercuration - Demurcuration

1. Hg(OAc)2/ROH
2. NaBH4
Markovnikov addition

Williamson Ether Synthesis (ROH--> ether)

1. NaH 2. R-X (Br2CH2Ch3)
**unsymmetrical ether synthesis

Williamson Ether Synthesis (alkene --> ether)

1. X2/H2O
2. NaH (works through Sn2)

Acid Catalyzed Epoxide Opening

1. Cat. H2SO4/H2O
more substituted sight

Base Promoted Epoxide Opening (Direct Nucleophillic Opening)

1. CH3CH2ONa/CH3CH2OH
sterics govern selectivity

alkene --> X

HBr

alkene --> addition X

1. high conc. Br2

Allylic Bromination

1. low conc. Br2 -or- NBS/hv (to avoid addition)

Diels Alder Reaction

1. cis diene
trans diene = NO RXN

Reagents that do not effect aromatics

1. HBr
2. BH3-THF/NaOH H2O2
3. H2/Pd(-or- C)
4. KMnO4/NaOH/heat + H3O+ (unless benzylic sp3)

Electrophillic Aromatic Substitution

1. Br2/FeBr3
2. I2/HNO3
3. H2SO4/HNO3
4. H2SO4/SO3

Friedel-Craft Alkylation

1. R-X/FeBr3
2. R-X/AlCl3

Protonation of an alkene to make a C+

1. HF
2. H2SO4
Poor nucleophiles so no simple addition like H-Br

Generation C+

1. AlCl3 -or- FeBr3

Add acyl to aromatic

1. HCl/AlCl3

Clemmenson Reduction (remove ketone)

Zn(Hg)/aqHCl

Catterman-Koch Formulation (thoinylchloride --> aldehyde)

1. AlCl3/CuCl
2. benzene (aromatic)

Nucleophillic Aromatic Substitution

1. CH3NH2/heat
sigma complex is negative

Benzyne Mechanism (X --> NH2)

1. NaNH2/heat
50:50 mixture

BIrch Reduction

1.Na -or- Li/NH3/ROH
electron donating on alkene and vice versa

Benzylic Oxidation (benzylic alkane --> COOH)

1.KMnO4/NaOH/heat
2. H3O+

Benzylic Halogenation (Benzylic H --> Br(2))

1. Br2 -or- NBS/heat
chlorination is too difficult to control

Substitution at benzylic position

1. NaCN (Sn2)
2. CH3OH/heat

primary ROH --> CHO (oxidation)

1. PCC/CH2Cl2
2. swern

secondary ROH --> Ketone (oxidation)

1. any [o]
(PCC/CH2Cl2, swern, HCr2O4, HNO3, KMnO4)

alkene --> CHO/Ketone/formaldahyde (ozonolysis)

1. O3
2. S(CH3)2
R= alkyl/H

terminal alkynes --> CHO/Ketone

1. Hg2+/H2SO4/H2O
markovnikov addition

Aldehydes via hydroboration

1. Sia2BH
2. NaOH/H2O2

COOH --> ketones/CHO (addition)

1. 2 eq. RLi
2. H3O+
3.-H2O
only RLi works

Acid chlorides --> CHO (reduction)

1. acid chloride
2. LiAlH4
alternative: LiALH(OtBu)3 + H3O+ (mild reagent)

acid chlorides --> ketones

1. RMgX -or- RLi
alternative: R2CuLi (cuperate)(Gillman Reagent)

Nitriles --> CHO/ketones

1. CH3MgBr/ether
2. H30+

Dithianes --> CHO/ketone

1. H+/HgCl/H2O

Base Promoted Nucleophillic Addition to Carbonyls

1. OH- +H2O
(hydration is the presence of hydroxide)
rate determined by sterics

Base Promoted Nucleophillic Addition to Carbonyls: Cyanohydride Formation

1. KCN -or- NaCN
2. CH3OH

CN --> COOH

1. H30+/heat

CN --> ketone

1. 2 eq. RMgBr
2. H3O+

Carbonyls --> CN (Acid Catalyzed)

1. TsOH

Wolf-Kischner Reduction (of Carbonyls)

1. TsOH
2. KOH/heat

carbonyl --> CN

1. NH2-X/TsOH

Aromatic Substitution

1. excess Br2/NaHCO3 (suck up excess acid
2. excess Cl2/ NaHCO3
3. acid
(NH3 is a very strong deactivator)

Hoffman Elimination

1. excess CH3I
2. AgO/H2O
3. heat
Hoffman selectivity (opp. zaitzevs)

Cope Elimination (tertiary amines)

1.H2O2 -or- peracid

amines --> N2

1. NaNO/HCl

Gabriel Synthesis (make RNH2)

1. KOH
2. R-X
3. H2N-NH2
very acidic hydrogen

Azide Reduction

1. NaN3/DMF
2. LiAlH4
3. H2O

Nitrile Reduction

1. H2/Ni
2. LiAlH4/H2O

aromatic NO2 --> aromatic NH2

1. H2/Ni (or Pd)
2. Sn
3. H2SO4
4. Zn/HCl/ROH

ROH/CHO --> COOH

1. NaCrO7/H2SO4
2. KMnO4
3. HNO3

Benzyllic Oxidation --> COOH

any sp3 carbon
hot KMnO4

alkene --> cleavage in COOH

1. conc. KHnO4
2. [o]

Carbonylation of Organometallics

1. Mg/ether
2. CO2
3. H30+

CN --> COOH

1. HCl/H20/heat
2. NaOH/H2O/heat

CN --> NH2

1. LiAlH4/H2O

COOH --> amide (direct)

1. heat (>100 degrees C)