Honors Chemistry Final 2nd Semester (equations)

% composition

mass element/mass compound x 100

molecular formula

(empirical formula) x (X)

1 mol (avagadros #)

6.02 x 10^23

1 mol (gas at STP)

22.4 L

% yield

actual yield/theoretical yield x 100

Grahams Law

Rate A/Rate B = square of Ma/Mb

Daltons Law

total pressure = P1+P2+P3..

Boyles Law

P1V1=P2V2

Charles Law

V1T1 = V2T2

Gay Lusacs Law

P1T1 = P2V2

Combined Gas Law

P1V1/T1 = P2V2/T2

Ideal Gas Law

PV = nRT

Density of a Gas

Density = MP/RT

Molar mass of a Gas

M = mRT/PV

Standard Temperature

1 atm at 0 degrees

Standard Pressure

101.3 kPa at 273 K

Standard Molar Volume (gas at STP)

22.4 L = 1 mol

Standard Temp & Pressure

1 atm = 101.3 kpa

Henrys Law

S1/P1 = S2/P2

Percent by mass (m/m)

mass solute/mass solution x 100

Percent by volume (v/v)

volume solute/volume solution x 100

Molarity (M)

mole solute/liters solution

Molality (m)

mole solute/kg solvent

Mole fraction

mole solute/mole solute + mole solvent

Dilution equation

M1V1 = M2V2

Freezing point depression

Tf = Kf x m x i

Boiling point elevation

Tb = Kb x m x i

energy equation

(Hrxn)(# moles)

H*rxn

H
r(products) - H
r(reactants)

Gsystem

Hsystem - Tsystem

q

(m)(c)(t)

1 Calorie

1 kcal

1 kcal

1000 calories

1000 calories

1 Calorie

Average Reaction Rates

concentration/time

rate

k[A]m[B]n

aA + bB

cC + dD

Keq

[C]c[D]d/[A]a[B]b

Keq >

products favored

Keq <

reactants favored

AaBb(s)

aA(aq) + bB(aq)

Ksp

[A]a[B]b

Qsp < Ksp

no precipitate

Qsp > Ksp

precipitate

pH

-log[H+]

pOH

-log[OH-]

[H+]

antilog(-pH)

[OH-]

antilog(-pOH)

pH + pOH

14

[H+] x [OH-]

1 x 10^-14

Keq of weak acid

Ka

Keq of weak base

Kb

Titrations

M1V1 = M2V2

Mole ratio

Moles A = Moles B

Molar Mass

Mass A (g) = 1 mole A

Acogadros #

particles A = 1 mole A

Molar Volume

liters A = 1 mole A