Derivatives Rules

Definition of a Derivative

f'=limh->0 f(x+h)-f(x)/ h

d/dx(k)=

0

d/dx(k(u(x))=

k du/dx

d/dx(u^n)=

nu^n-1 du/dx

d/dx(u+v)=

du/dx+dv/dx

d/dx(u-v)=

du/dx-dv/dx

d/dx(uv)=

uv'+vu'

d/dx(u/v)=

vu'-uv'/v^2

d/dx(f(g(x))=

f'(g(x))g'(x)

dy/dx=

dy/du du/dx

d/dx(sinu)=

cosu du/dx

d/dx(cosu)=

-sinu du/dx

d/dx(tanu)=

sec^2u du/dx

d/dx(cotu)=

-csc^2u du/dx

d/dx(secu)=

secutanu du/dx

d/dx(cscu)=

-cscucotu du/dx

d/dx(sin^-1u)=

1/√1-u^2 du/dx

d/dx(cos^-1u)=

-1/√1-u^2 du/dx

d/dx(tan^-1u)=

1/u^2+1 du/dx

d/dx(cot^-1u)=

-1/u^2+1 du/dx

d/dx(sec^-1u)=

1/|u|√u^2-1 du/dx

d/dx(csc^-1u)=

-1/|u|√u^2-1 du/dx

d/dx(lnu)=

1/u du/dx

d/dx(logau)=

1/ulna du/dx

d/dx(e^u)=

e^u du/dx

d/dx(a^u)=

a^u lna du/dx

inverse d/dx g'(x)=

1/f'(g(x))